Demonstrating clean, efficient, and scalable code with modern best practices
Efficient O(log n) search algorithm that works on sorted arrays by repeatedly dividing the search interval in half.
function binarySearch(arr, target) {
let left = 0;
let right = arr.length - 1;
while (left <= right) {
const mid = Math.floor((left + right) / 2);
if (arr[mid] === target) return mid;
if (arr[mid] < target) left = mid + 1;
else right = mid - 1;
}
return -1; // Not found
}
Divide-and-conquer algorithm with O(n log n) time complexity that recursively splits, sorts, and merges subarrays.
function mergeSort(arr) {
if (arr.length <= 1) return arr;
const mid = Math.floor(arr.length / 2);
const left = mergeSort(arr.slice(0, mid));
const right = mergeSort(arr.slice(mid));
return merge(left, right);
}
function merge(left, right) {
let result = [];
let i = 0, j = 0;
while (i < left.length && j < right.length) {
if (left[i] < right[j]) result.push(left[i++]);
else result.push(right[j++]);
}
return result.concat(left.slice(i)).concat(right.slice(j));
}
Use meaningful variable names, consistent indentation, and comments where necessary. Break complex operations into smaller functions.
Choose appropriate data structures and algorithms. Consider time and space complexity. Avoid unnecessary computations.
Design systems that can grow. Use modular architecture, avoid tight coupling, and plan for future requirements.